Knowledge-Based Systems 279 (2023) 110923

Contents lists available at ScienceDirect 2
Knowledge-Based Systems
journal homepage: www.elsevier.com/locate/knosys :
SGCN: A scalable graph convolutional network with graph-shaped R
kernels and multi-channels oy

a,b,*

Zhenhua Huang®', Wenhao Zhou *'!, Kunhao Li*!, Zhaohong Jia

2School of Internet, Anhui University, Feixi Road, Hefei, 230039, China
b Key Lab of Intelligent Computing and Signal Processing of Ministry of Education, Jiulong Road, Hefei, China

ARTICLE INFO ABSTRACT

Article history:

Received 2 June 2023

Received in revised form 14 August 2023
Accepted 17 August 2023

Available online 20 August 2023

Graph neural networks (GNNs) have demonstrated great success in graph processing. However,
current message-passing-based GNNs have limitations in terms of feature aggregations and update
mechanisms that rely on a fixed mode, resulting in inadequate representations of the neighborhood
structure’s richness. Furthermore, the convolution layer in most GNNs lacks flexibility and multiple
channels compared to convolutional neural networks (CNNs), which employ multiple channels, where
different kernels capture shared patterns of images. To address these limitations, we propose a novel
scalable graph convolution network (SGCN) to enhance structural information learning by introducing
an expressive feature aggregation mechanism. Drawing inspiration from the design of CNNs, the SGCN
includes graph-shaped kernels that perform multichannel convolutions on the subgraph structure. A
sampler based on degree centrality is employed to simplify the computation costs, and extensive
experiments demonstrate that the SGCN achieved state-of-the-art performances on graph datasets

Keywords:

Graph neural network
Graph-shaped kernels
Node classification
Large graph

with various scales (with accuracy improvements of up to 5.38%).

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

Graph neural networks (GNNs), which are deep learning
frameworks for processing graph-structured data, have been suc-
cessfully applied to solve different tasks, such as network anal-
ysis [1,2], recommendation systems [3,4], biochemistry [5,6],
traffic prediction [7,8], location prediction [9], knowledge trac-
ing [10], computer vision [11,12], and natural language process-
ing [13,14].

Message passing is a widely adopted aggregation architecture
in various classic and advanced GNNs [15], such as the GCN [16],
which utilizes a simple and efficient graph convolution opera-
tion. The GAT [17] introduces attention mechanisms for more
expressive representations, GraphSAGE [18] employs neighbor-
hood sampling to handle large-scale graphs, and LightGCN [19]
focuses on collaborative filtering-based recommendation tasks.
Other works based on message passing also include UniMP [20],
FusedGAT [21], and the Anti-Symmetric DGN [22]. GNNs based
on message passing aggregate and update nodes’ representa-
tion vectors by considering information from their neighbors
and achieving satisfactory performances for node representation.

* Corresponding author.
E-mail addresses: zhhuangscut@gmail.com (Z. Huang),
wenhaozhoul112@gmail.com (W. Zhou), kunhomlihf@gmail.com (K. Li),
zhjia@mail.ustc.edu.cn (Z. Jia).

1 Equal First Authors.

https://doi.org/10.1016/j.knosys.2023.110923
0950-7051/© 2023 Elsevier B.V. All rights reserved.

Fig. 1 illustrates that message passing operates on the features of
nodes within their respective neighborhoods. However, the exist-
ing graph models suffer from a limitation in that they fail to cap-
ture the common structural patterns inherent in graphs within
their parameters. Consequently, this limitation hampers their
ability to effectively learn and incorporate information about the
underlying graph structure [23].

In contrast to GNNs, convolutional neural networks (CNNs)
[24] are designed to capture the local structure in images using
convolution kernels, which refer to a pattern [25]. CNNs offer
the advantage of flexible kernel design, where different kernels
are used to capture distinct patterns in different channels. Each
channel shares the same kernel, allowing for efficient param-
eter sharing and feature extraction. Existing message-passing-
based GNNs face challenges in directly learning and leveraging
such patterns in graphs despite the presence of shared meaning-
ful substructures or patterns. For instance, the GAT overcomes
the problem of single-channel convolution by utilizing attention
mechanisms to aggregate features from subgraphs, while the
pattern is singular across the neighbors. Nevertheless, the concept
of flexible convolutional kernels and multiple channels in CNNs
can inspire the design of novel GNN frameworks [26]. By incor-
porating the idea of flexible convolutional kernels and multiple
channels from CNNs, we explore new possibilities for enhancing
GNN architectures to learn patterns within graphs.

Furthermore, message-passing-based GNNs face significant
challenges in terms of computation and storage when process-
ing large graphs. Several models have been proposed for large

Z. Huang, W. Zhou, K. Li et al.

|
i W1

[

) O Aggragate (==) f > H
— —
] g Update q
E i Xy X2 X3 Xq £ 2
X3 4 23 4

X4 Z4

Fig. 1. Message-passing-based GNN framework. Each node in the graph
aggregates and updates its representation, and f represents a multilayer
perceptron.

graphs, such as SGC [27], which simplifies the graph convolu-
tion operation by removing the nonlinear activation function.
FastGCN [28] introduces a layer-wise sparse approximation tech-
nique that accelerates the training process, and the ASGCN [29]
adapts the sampling strategy based on the local graph structure
to optimize computational efficiency. ClusterGCN [30] leverages
clustering techniques to partition the graph and parallelize the
convolutional operations. GraphSAINT [31]. These models sim-
plify benchmark models or adopt node samplings to improve
computational efficiency. However, based on our experimental
statistics, these GNNs lead to inconspicuous improvements in
general graphs, which highlights the need to find a balance
between enhancing performance on large graphs and ensuring
the universality of GNNs.

To address the above problems, we propose a novel Scalable
Graph Convolution Network (SGCN). The SGCN consists of mul-
tiple scalable convolution layers (SCLs), which employ stacked
convolution kernels with different graph shapes. The parameters
of a kernel are shared within a whole graph. During convolution
operations, the representations of nodes covered by a kernel are
multiplied by corresponding weights, which enables the kernel
to learn local structure patterns from substructures within the
graph. To reduce the computational cost, we introduce a sampler
based on degree centrality [32] to sample graph substructures.

In Fig. 2, the graph-shaped kernels in the SCL exhibit different
shapes. To generalize these kernels with neighbors, we use W
as a representation. In this paper, we only consider a simple
graph-shaped kernel where a single neighboring node surrounds
the central node. W? refers to W?(1), and W3 refers to W3(1).
By convolving this kernel with subgraphs consisting of corre-
sponding nodes in the graph, we can capture a wide range of
structural features present in the neighborhood. The parameters
of the kernel are shared within a channel, and different kernels
capture distinct patterns. This flexible kernel design allows the
SGCN to adapt to different scale graphs. Extensive experiments
demonstrate that the SGCN achieves state-of-the-art performance
in node classification tasks across nine real-world graph datasets.

Our contributions are as follows:

e We propose a novel scalable graph convolution network
(SGCN) that addresses limitations in existing graph neural
networks. The SGCN overcomes the challenges of capturing
diverse patterns in neighborhoods and achieving balanced
performance across graphs of varying scales. By utilizing
flexible graph convolution kernels of different types and
sizes, the SGCN enables the learning of shared structural
patterns in graphs, making it applicable to graphs of any
scale.

e Extensive experiments demonstrate that the SGCN outper-
forms existing GNNs in node classification tasks on nine
real-world graph datasets, achieving an improvement of up
to 5.38%, which offers a promising solution to graph-based
learning tasks.

Knowledge-Based Systems 279 (2023) 110923

The subsequent structure of this paper is organized as fol-
lows: In Section 2, we review related works about graph neural
networks, kernel methods on graphs, and the design of graph
convolutional kernels. Section 3 defines the problem of node clas-
sification and explains the message-passing mechanism, graph
convolutional network, and over-smoothing problems. In Sec-
tion 4, details of the proposed model are introduced, and Sec-
tion 5 presents the experimental setup. Extensive experiments
and analysis are presented in Section 6, and we summarize this
study in Section 7.

2. Related works

This section provides recent works related to our research,
focusing on graph neural networks, kernel methods on graphs,
and convolutional neural kernels.

2.1. Graph neural networks

Graph neural networks (GNNs) represent a form of deep
neural network that is specifically tailored for graph-structured
data processing. Several noteworthy examples of GNNs include
ChebNet [33], which relies on neighbor message passing for
information aggregation, the GCN [16], which employs a similar
neighbor-to-neighbor passage of information, and the GAT [17],
which innovatively integrates a self-attention mechanism to ag-
gregate node features using adjustable weights. GraphSAGE [18]
utilizes localized neighborhood sampling and aggregation to gen-
erate novel data embeddings, while the DHGNN [34] leverages
both shared and specific hypergraph convolution layers, coupled
with attention mechanisms, to effectively synthesize diverse in-
formation sources and combine dual node embeddings. Further
examples include FusedGAT [21], which optimizes the GAT model
by trimming computation and memory requirements. The Anti-
Symmetric DGN [22], which provides a stable and non-dissipative
framework for designing deep graph neural networks, inspired
by ordinary differential equations. And VCLANC [35], which per-
forms self-supervised learning by reconstructing the network
structure and node attributes to explore deeper information.
Finally, RGDAL [36] adopts an information-theoretic principle
to sieve out noisy factors for cross-network node classification.
Despite the commendable contributions made by these primarily
message-passing [15] methods, they lack the desired flexibil-
ity and adaptability to local graph structures across multiple
channels.

In the large-scale graph context, several GNNs have been
engineered specifically for node classification tasks. FastGCN [28]
diminishes computational costs through the deployment of sam-
pling techniques, and the ASGCN [29] addresses the over-
smoothing issue [37] by incorporating a sparsity regularization
term. This term prevents node representations from becoming
increasingly similar with layer increments, thus preserving lo-
calized discriminative information. ClusterGCN [30] addresses
scalability issues by capitalizing on graph clustering, while Graph-
SAINT [31] boosts generalization ability by amalgamating sub-
graph sampling with GNNs. Furthermore, PaSca [38] introduces
a novel scalable graph neural architecture paradigm (SGAP) to
comprehensively explore the architecture space. However, our
experimental findings suggest that compared to general GNNs,
these methods exhibit marginal performance improvements on
smaller graphs.

Z. Huang, W. Zhou, K. Li et al.

Channel 3
Channel 2
Channel 1

Channel 3
Channel 2

Channel 1 Channel 1

Graph Convolution Kernels

Channel 3
Channel 2

Knowledge-Based Systems 279 (2023) 110923

Different Patterns

Fig. 2. Graph-Shaped kernels in different channels and patterns. The left half illustrates different shapes of W? and W3 kernels, where the same kernel can be

applied to different channels. The right half of the figure displays potential patterns.

2.2. Kernel methods on graphs

Graph kernels provide a foundational approach to evaluat-
ing similarities between graphs, enabling graph classification
and regression [39]. Predominantly, graph kernels adhere to the
R-convolution paradigm, which involves contrasting varying sub-
structures of input graphs, such as random walks [40-42], short-
est paths [43], subtrees [44], and graphlets [33].

The Weisfeiler-Lehman framework operates in concert with
existing kernels. It deploys a relabeling process predicated on
the Weisfeiler-Lehman isomorphism test [45]. Gilmer et al. [15]
suggested a convolutional operation model based on continu-
ous kernels, intending to learn feature representations of graph
structures through internode information swapping. Nikolentzos
et al. [46] excavated neighborhoods of various sizes from the
graph via community detection and accordingly utilized graph
kernels for normalization. SplineCNN [47] extends the tradi-
tional CNN convolution operators by adopting continuous kernel
functions parameterized by a predetermined count of trainable
weights.

Although graph kernel-based approaches have demonstrated
considerable success on graph classification tasks, their direct
application to node classification tasks is largely non-feasible.
A typical strategy involves using graph kernels to map node
features onto high-dimensional vectors, which are then processed
through neural networks for node classification [48].

2.3. Convolutional neural networks

Groundbreaking research by LeCun et al. [24] introduced the
concept of convolutional neural networks and convolution ker-
nels. These techniques have proven instrumental in extracting
structure patterns from images. However, due to the distinc-
tive configuration of graph data, conventional CNNs are not di-
rectly applicable to graph data. Conversely, Tixier et al. [49]
represented the graph as a conglomerate of bivariate histograms,
which were processed as input for a traditional 2D CNN. Niepert
et al. [50] proposed a more universal methodology for extracting
locally connected regions from graphs, which are subsequently
processed by a 1D CNN. These prior studies have attempted
to employ convolutional operations on graph data, essentially
through the reformulation of graph data. Nonetheless, the convo-
lution Kernels in these methods remain static, thereby imposing
limitations on their capacity for node feature representation.

Table 1

Notations in the sgcn.

Symbols Definition and description

G A general undirected graph

1% Node set

X Node feature

Gf K-hop neighborhood subgraph of node v;
G~ Subgraph sampling list for K-hop neighborhood
H Raw input to convolutional layer

H* Result of convolution with W¥

wk Kernel with size k and channel cth

z The output embedding of nodes

Y The label of nodes

3. Preliminaries
3.1. Problem description

A graphisrepresented as G = (V, X, A), where V = {vq, vy, ...
vy} denotes the node set. X € RN*F denotes the node features,
where N is the number of nodes and F is the number of feature
dimensions. A € RN*N denotes the adjacency matrix, and the
node labels are denoted as Y with M categories. The symbols in
this paper are summarized in Table 1.

3.2. Message passing

Typical graph neural networks employ message passing to ag-
gregate node features by gathering information from neighboring
nodes. This process allows central nodes to capture the features
of their local subgraphs. The computation is described as follows:

h = MLPO{COMB(RY, >~ h{f~)} (1)

ueN(v)

where h{®) denotes the feature of v in the kth iteration and
N(v) denotes the neighbors of v. COMB and MLP represent the
combination function and multilayer perceptron, respectively.
Message-passing-based graph neural networks (GNNs) ag-
gregate messages by recognizing information from neighboring
nodes at each step, thereby determining the convolution shape
according to the structure of these neighboring nodes. Limitations
arise with this model, however, as it inherently struggles to

Z. Huang, W. Zhou, K. Li et al.

capture the complex nature of local graph structures. Moreover,
the weights of the multilayer perceptron MLP directly interact
with the node feature dimension, limiting the model’s potential
to thoroughly learn shared structural patterns. Additionally, when
handling large graphs, the corresponding adjacency matrix is typ-
ically large, necessitating substantial storage and computational
resources for the application of most message-passing-based
GNNs.

3.3. Graph convolutional networks

Joan et al. [51] first proposed graph convolutional neural net-
works based on spectral-domain and spatial-domain representa-
tions. One of the most classic GNNs, the GCN [16], is defined by
the following formula:

HHD — U(AHU)W(D) (2)

where A signifies the normalized adjacency matrix of the graph,
H denotes the feature matrix of the nodes, and W represents
the GCN’s weight matrix. The formula AHW encapsulates the
aggregation and transformation of neighboring node features,
effectively integrating the graph structure into the learning pro-
cess. The resulting matrix is subsequently passed through an
activation function, introducing nonlinearity to capture intricate
relationships.

3.4. Over-smoothing

The phenomenon of over-smoothing [37] can occur within the
feature representations of the local graph structure and individual
nodes, stemming from the proliferation of encodings [52]. This
convergence of node characterization towards a limited set of val-
ues results in a diminished ability to discern nodes from disparate
clusters. Specifically, nodes belonging to distinct classes but pos-
sessing proximate topological proximity tend to exhibit reduced
discriminative capacity, leading to potential misclassifications.

A straightforward and effective approach to mitigate the issue
of graph over-smoothing is to adopt residual connection struc-
tures like ResNet [53] architecture. This involves the fusion of
the original node features with the iteratively updated embed-
dings, preserving the intrinsic characteristics of the nodes while
allowing for the incorporation of refined information. Integrating
the raw features of the network helps counteract the tendency of
nodes to coalesce into a uniform feature space due to excessive
smoothing.

4. Scalable graph convolution network

The architecture of the scalable graph convolution network
(SGCN) is illustrated in Fig. 5. A graph G is input into a sam-
pler to create subgraphs, and this process acquires the sampled
embedding, which is denoted by H. This embedded H is input
into the SGCN as the initial input. The output Z from the SGCN
is then harnessed for node classification. Furthermore, a residual
connection is used to mitigate the issue of over-smoothing [37].

4.1. Scalable convolution layer

An SGCN comprises several scalable convolutional layers
(SCLs), where the node embedding, which is represented by H,
serves as the input to the SCL. The procedure for calculating
the SCL is depicted in Fig. 3. A kernel nested within the SCL is
designed as a weight matrix encompassing neighboring nodes,
and this convolution kernel is denoted by W*, where k signifies
the number of covered nodes in the kernel list K. Each kernel
corresponds proportionately to a channel. By convolving the

Knowledge-Based Systems 279 (2023) 110923

W2

H1I = H'AWO +H'FW1+H'EW2
Hz = H'awp +H'cwi+Hp w,

Hi = H'awo +H's wy+H'e W,

He = H'awo +Howi+H's w,

H™'=Hi+Hy+ Hy+ == + H

Fig. 3. An example of convolutional calculations in W?2. The graph-shaped kernel
is multiplied with the central node and the two selected neighboring nodes it
covers in each channel.

input data with these particular kernels, the SGCN manages to
encapsulate the local structural particulars of the graph.
The SCL equation is computed as follows:

C
H1+] — ZWf(HI) +B (3)

c=1

where H*1 € RNXCxL js the output of the Ith layer. C denotes
the number of channels, W¥ € R *C and B € RN**L de-
note the weight matrix and bias, respectively, and L denotes the
embedding length of H.

The output embeddings generated by the last SCL using W* are
denoted by #*. We concatenate each embedding as #, and aver-
age pooling is applied to aggregate features by the last dimension.
The output of pooling Z, is calculated as follows:

H = Concat(H', H?, ..., H"),
L
1 (4)
Zp = Z ZH:‘
i=1
where H € RN*OKxL and 7, ¢ RNX(CxK),

4.2. Sampler

To sample nodes that contain rich structural information while
reducing computational costs, a sampler based on degree central-
ity [32] is applied.

An example is shown in Fig. 4. When the sampling rate is 80%,
the computational costs of using the W*, W3, and W? kernels are
reduced by 80%, 60%, and 40%, respectively.

The SGCN constructs a K-hop subgraph based on the cen-
tral node and samples a subgraph sequence according to the
neighbor’s degree centrality. The sampler is shown in Algorithm
1, where K_hop_subgraph is used to obtain a K-hop subgraph
around node v; by A and K, and Choose returns the subgraph
composed of s; nodes with the highest deg_c in the subset.

For each node vj, G{E denotes the subgraph with a x-hop
neighborhood (K can be 1, 2, - - -, etc.), where G* is a subgraph
list composed of foi, as shown in Eq. (5). Each subgraph element
Gf}; contains a node set V,; and adjacency matrix A,,.

GC=[G).....Gh] =1[(Vo. Au)s s (Viys Ayl (5)

Z. Huang, W. Zhou, K. Li et al.

Before Sampling After Sampling

Ci=5 Ci=1
Ci=10 Ci=4
C:=10 C=6

Fig. 4. Comparison of the computational cost under the implemented sampling
strategy. Note that, for the kernels W*, W3, and W?, each convolution necessi-
tates the selection of 4, 3, and 2 neighbors, respectively, from the central node’s
5 neighbors prior to sampling. Upon 80% sampling of the neighboring nodes,
each convolution then requires the selection of 4, 3, and 2 neighbors from the
4 neighbors of the central node.

Algorithm 1 Sampler in SGCN.

Input: General graph G = (V, A), sample ratio r, sample hop K.
Output: Sampled subgraphs sequence G*.
Initialize subgraph list G*;
for v; in V do
subset = K_hop_subgraph(v;, A, K);
s; = r x len(subset);
Initialize list deg_c;
for v; in subset do
wy = Y, Agli # J);
deg_c.append(w.,);
end for
G:}Ci = Choose(subset, degrees, s;);
G*.append(G});
end for
return Sampled subgraphs sequence G*;

The features of subgraph G- are X,, € RSKXFwhich are com-
posed of the corresponding node features. s; denotes the number
of nodes in Gl’fi, and a sum function acting on the first dimension
is used to align features. Each node v;’s feature h; is updated as
follows:
Si
hi = ij.k,F (Xj.k,F € Xy;) (6)
j=1

where h; € R**F. Each h; is concatenated to compose the
sampled embeddings that combine original features and structure
information. The sampled embeddings H are as follows:

H = Concat(hy, ..., hy) (7)

where H € RVN*FxL,
4.3. Residual connection

Inspired by ResNet [53], to alleviate the over-smoothing prob-
lem [37] in GNNs, we downsample H as follows:

Zqg = Wy4H + By (8)

where Z; € RN*(©xK is the output of downsampling and W, and
By are the weight and bias in the residual connection, respec-
tively. Zy is added to the output embedding of the last SCL, which

Knowledge-Based Systems 279 (2023) 110923

is formulated as follows:

Z=27y+24 (9)
4.4. Classification

Z is used to predict the label after a fully connected layer,
and the model’s prediction Y € R¥*M is obtained after applying
softmax as follows:

Y = softmax(W.Z + B.) (10)

M is the number of classes.
The loss function for the node classification is expressed as
follows:

M
Lr==Y Y YV +40)? (11)

veV i=1

where A denotes a regularization parameter and 6 denotes the
parameters of the model.

Algorithm 2 Framework of the SGCN.

Input: General graph G = (V, X, A), sample ratio r, kernel list K,
channel size C.
Output: The final predicted label Y.
Sample subgraph list G* for each node (Algorithm 1);
Construct node embeddings H from G* (Egs. (6) (7));
while not converged do
for k in K do
Compute H* using convolutional kernels W (Eq. (3));
end for
Obtain Z, by concatenating the convolution result # and
pooling (Eq. (4));
Obtain the final embedding Z using the residual network
(Egs. (8) (9));
Produce the final predicted label Y using classification (Eq.
(10));
Update 6 using cross-entropy loss Eq. (11);
end while
return The predicted label Y;

5. Experimental setup
5.1. Data description

To evaluate the performance of the SGCN on the node classifi-
cation task, we considered the following ten real-world datasets:

Cora [54]: A citation network of scientific publications in
machine learning that consists of 2,708 papers represented by a
bag-of-words feature, where edges represent citation links.

CiteSeer [54]: A citation network with 3,327 papers. Each pa-
per is represented by a feature vector based on word occurrences,
and edges represent citation links.

Photo [55]: A social network of photos with associated tags.
This dataset contains 7,650 photos and their corresponding tag
information. Nodes represent goods, and edges represent that
two goods are frequently bought together.

CS [55]: A citation network of computer science publications
that consists of 18,333 scientific papers. Nodes represent authors
as connected by an edge if they coauthored a paper.

PubMed [54]: A citation network of biomedical literature con-
taining 19,717 papers. Each paper is represented by a word vec-
tor, and edges represent citation links.

CoraFull [54]: A larger version of the Cora dataset containing
19,793 papers. Nodes represent documents, and edges represent
citation links.

Z. Huang, W. Zhou, K. Li et al.

Knowledge-Based Systems 279 (2023) 110923

C G)—»[Sampler]

\ 730

' 3hop ;-
=

!

Downsampling

e
s7p X
x /o
oo © g
ol o 0
Oo 20 O%ts
Aog La9lg o/ ©
0%y {
© 9 | ,//a"
A
\ "/?‘O‘\a‘\“

Fig. 5. Framework of SGCN. The data preprocessing involves sampling important subgraphs for each node to get original node embeddings H. In scalable convolution,
convolution is performed on H using different graph-shaped kernels. The residual connectivity incorporates Z; after down-sampling H and scalable convolution result
after concat and pooling operation Z, through addition. The result of residual connectivity Z is employed in classification to predict the label Y.

Physics [55]: A co-authorship network of 34,493 high-energy
physics theory papers. Nodes represent authors, and an edge
connects authors if they coauthored a paper.

Flickr [31]: A social network of photos with 89,250 photos
and their associated tag information. Nodes represent users or
accounts, and edges represent relationships between these users.

Reddit [18]: A social network of posts and comments on
the website Reddit, comprising 232,965 posts and their asso-
ciated comments. Nodes represent individual posts or submis-
sions made by users on the Reddit platform, and edges represent
replies, comments, or other forms of interactions between the
posts.

Amazon [31]: A social network dataset that contains prod-
uct reviews and metadata from Amazon for classifying product
categories based on buyer reviews and interactions. The nodes
and edges represent entities and relationships between entities,
respectively.

These benchmark datasets have different scales and sparsity,
and they were used to evaluate the performance and generaliz-
ability of the SGCN.

5.2. Baselines

For node classification, the following strong baselines achieved
notable performance:

GCN [16]: The GCN is a widely used graph convolution net-
work that updates the features of a node by averaging its neigh-
boring nodes’ features.

GAT [17]: The GAT aggregates neighbor features using multi-
head attention, achieving SOTA performance on various datasets.

GraphSAGE [18]: GraphSAGE is the first inductive graph neu-
ral network that aggregates node features by sampling neigh-
boring nodes. It predicts graph context and labels using the
aggregated information.

MPNN [15]: The MPNN utilizes convolutional operations based
on continuous Kkernels to learn feature representations of graph
structures by facilitating information exchange between nodes.

SplineCNN [47]: SplineCNN is a type of graph convolutional
neural network that employs continuous B-spline kernels on
irregularly structured data such as graphs.

FastGCN [28]: FastGCN interprets graph convolutions as
integral transforms of embedding functions under probability

measures. It provides a sampling method that depends on the
importance of nodes.

ASGCN [29]: The ASGCN constructs the network layer by layer
in a top-down manner and samples the lower layer conditioned
on the top layer. This approach allows shared sampled neighbor-
hoods and avoids overexpansion due to fixed-size sampling.

ClusterGCN [30]: ClusterGCN samples a block of nodes associ-
ated with a dense subgraph, which is identified by exploiting the
graph clustering structure. It restricts the neighborhood search
within this subgraph.

GraphSAINT [31]: GraphSAINT introduces a graph neural net-
work model based on a sampled graph, where calculations on
each minibatch are performed on the sampled graph without the
neighbor explosion phenomenon.

PaSca [38]: PaSca presents a scalable graph neural architec-
ture paradigm that can search for well-performing and scalable
GNN architectures using multi-objective optimization to balance
trade-offs between different criteria.

FusedGAT [21]: An optimized version of the GAT based on the
DGNN [56] that fuses message passing computation for acceler-
ated execution and a lower memory footprint.

Anti-Symmetric DGN [22]: A framework for stable and non-
dissipative deep graph network design inspired by ordinary dif-
ferential equations.

5.3. Parameter settings

In the case of the scalable graph convolution network (SGCN),
the datasets were randomly divided in the following manner: 60%
were allocated for training, 20% were set aside for validation, and
the remaining 20% were reserved for testing. The sample ratio
was established at either 0.2 or 0.5. Utilizing the Adam optimizer,
the learning rate was established at 0.003, while the weight decay
was set to 5e~%. Alterations within a specified limit may enhance
performance under particular circumstances. For the baseline
methodologies, a similar data division of 6:2:2 was employed.
Corresponding to the SGCN, the learning rate was established
at 0.003, the hidden layer size was set to 128, and the dropout
rate was 0.4. All other parameters were initialized based on the
specifications suggested in their associated research papers. All of
the baseline models were implemented by PyG [57]. Due to the
current lack of support for complex graph computations in main-
stream frameworks such as PyTorch and TensorFlow, we have

Z. Huang, W. Zhou, K. Li et al.

Knowledge-Based Systems 279 (2023) 110923

Table 2
Node classification performance.
Datasets Cora CiteSeer Photo CS PubMed CoraFull Physics Flickr Reddit Amazon
V| 2,708 3,327 7,650 18,333 19,717 19,793 34,493 89,250 232,965 1,569,960
|E| 5,429 4,732 238,162 163,788 44,338 126,842 495,924 899,756 114,615,892 264,339,468
classes 7 6 8 15 3 70 5 7 41 107
GCN 88.38 + 0.44 75.35 £ 0.57 89.98 + 2.08 90.08 + 0.11 85.35 £ 0.20 50.11 £+ 2.06 95.13 + 2.11 41.66 + 0.01 - -
GAT 86.04 + 0.61 7190 £ 0.36 91.78 £+ 2.98 91.72 £+ 0.44 86.78 £+ 0.08 64.72 + 0.56 95.83 + 1.78 46.10 + 1.58 - -
GraphSAGE 88.23 £+ 0.32 75.54 £+ 0.46 90.34 £+ 2.12 93.77 + 0.79 87.59 £ 0.27 5342 + 132 96.27 + 1.09 44,05 + 3.69 - -
FusedGAT 85.05 + 0.78 73.69 £+ 0.86 92.71 + 0.32 91.35 + 0.05 85.57 £+ 0.40 65.65 + 0.48 95.84 £+ 0.10 4769 + 0.63 - -
Anti-Symmetric 86.39 £+ 0.24 75.72 £ 0.30 93.90 £ 0.15 939 £ 0.12 87.32 £ 0.06 67.06 = 0.51 95.82 + 0.37 47.32 + 040 - -
MPNN 87.29 + 0.41 73.03 + 0.81 65.37 + 0.29 85.47 + 0.33 8478 £+ 0.23 - - - - -
SplineCNN 88.32 + 0.37 7498 + 0.39 93.97 + 0.42 94.31 + 0.23 86.74 + 0.79 7044 + 0.27 96.01 + 0.22 4779 + 2.24 - -
FastGCN 87.25 + 0.27 72.88 + 0.36 91.35 + 1.81 94.18 + 0.08 87.51 £+ 0.15 69.52 + 1.05 95.55 + 2.17 46.60 + 1.32 92,40 + 0.16 -
ASGCN 87.93 + 0.41 72,64 + 045 92.81 + 1.91 91.71 + 1.82 88.59 + 0.22 69.66 + 0.87 96.31 + 0.05 4775 + 1.62 93.35 £ 0.46 -
ClusterGCN 86.35 + 0.98 7297 + 130 93.14 + 0.34 93.74 + 0.22 88.79 + 0.28 69.09 + 0.37 96.37 + 0.15 47.32 + 0.38 91.72 £+ 3.19 75.90 + 0.39
GraphSAINT 86.81 + 0.30 75.29 + 0.31 90.39 + 0.45 9393 + 0.27 88.59 + 0.25 69.76 + 0.22 96.39 + 0.07 4711 + 0.74 93.31 + 043 78.70 + 0.17
PaSca 87.13 £+ 3.18 75.09 £ 0.69 90.28 £ 0.17 92.94 £+ 0.38 86.32 £ 0.13 - 96.30 £ 0.70 4438 + 1.40 93.23 £ 0.10 -
SGCN 88.66 + 0.33 81.10 + 0.14 94.98 + 0.35 94.85 + 0.30 89.10 + 0.34 7343 + 0.27 96.70 + 0.20 51.19 + 040 94.63 + 0.14 79.91 + 0.23
Least Improvement 0.28 5.38 1.01 0.54 0.31 299 0.31 3.40 1.28 1.54
Avg. Improvement 1.56 7.01 5.42 259 2.11 8.48 0.71 5.03 1.82 3.38
Table3 While ClusterGCN and SplineCNN exhibit notable performance
Time cost (in minutes) of models on the large graph. : on several datasets, SplineCNN records considerable performance
Datasets Physics Flickr Reddit gaps in comparison to the SGCN on CiteSeer, PubMed, and Flickr.
FastGCN 39.15 90.16 270.35 Notably, the SGCN exceeds SplineCNN by 4.8% on CiteSeer. Due to
ASCCN 45.25 108.39 31047 their high computational power consumption and memory usage
ClusterGCN 43.89 100.33 298.81 & P P k p y usage,
GraphSAINT 46.39 115.91 330.12 these kernel methods are impractical for large-scale graphs. The
PaSca 44.37 101.72 346.31 experimental statistics suggest that the SGCN boasts a potent
SGCN 42.65 105.79 315.19 expressiveness and consistently retains a low standard deviation

implemented an equivalent representation of graph convolution
using one-dimensional convolutions.

6. Experimental analysis

In this section, we analyze the experimental results of the
SGCN, including the node classification, kernel shape, ablation
study, parameter sensitivity, and visualization.

6.1. Node classification

To affirm the effectiveness of the SGCN and the baselines, they
were subjected to a node classification task. Each method was
executed across various datasets, and the accuracy was calculated
along with the standard deviation. The respective results are
presented in Table 2. The GCN, GAT, GraphSage, FusedGAT, and
Anti-Symmetric methodologies were applied to general graphs,
the MPNN and SplineCNN constituted kernel methods, while
FastGCN, the ASGCN, ClusterGCN, GraphSAINT, and PaSca were
employed on large graphs. Various methods are differentiated via
lines for clarity.

As can be observed from Table 2, the SGCN achieves peerless
accuracy across all benchmark datasets. Furthermore, the SGCN
outperforms the baseline by over 1% on the CiteSeer, Photo, Cora-
Full, Flickr, Reddit, and Amazon datasets. In comparison to each
individual baseline, the SGCN records an average improvement
exceeding 1.5%, except for on the Physics dataset. This result
could potentially be ascribed to the relatively straightforward
nature of classification in the realm of physics, as all models
exhibit commendable performance on this dataset. Significantly,
the SGCN vastly outperforms other methods on CiteSeer, reach-
ing an accuracy of 81.10%. Conversely, the highest performance
exhibited by the Anti-Symmetric model only achieved 75.72%,
which is 5.38% below that of the SGCN. On the Physics dataset,
all models displayed competitive performance with scores of ap-
proximately 96%. The SGCN also exemplifies robust performance
on large-scale graphs, superseding the optimum baseline on the
Flickr dataset by 3.4%.

across different scales of graphs.

We performed a comparative analysis of time consumption
among large-scale graph models and the SGCN on the Physics,
Flickr, and Reddit datasets, and the results are summarized in Ta-
ble 3. Overall, FastGCN has the lowest time consumption among
the models. On the Physics dataset, the time consumption of
each model is relatively close, with the SGCN exhibiting a time
consumption of 42.65 min, which is second only to FastGCN. On
the Flickr dataset, ClusterGCN and PaSca perform similarly to the
SGCN but with lower time consumption compared to the ASGCN
and GraphSAINT. On the Reddit dataset, FastGCN and ClusterGCN
have the best time performance, while the ASGCN and SGCN have
similar time consumption. These experiments demonstrate that
SGCN achieves state-of-the-art performance without increasing
time consumption.

6.2. Kernel shape

In this section, we examine the influence of different kernel
shapes on the node classification task. We employed three types
of convolutional kernels: W2, W3, and a combination of W2 and
W3, which is denoted as W? + W3, As depicted in Fig. 6, we ob-
serve that the combination kernel, W2+ W?3, consistently exhibits
the best performance across all datasets except for Cora, sug-
gesting that the cooperation between kernels enables the SGCN
to learn the neighborhood more comprehensively. For the Cora
citation network, W3 performs the best. This result implies that
larger kernels are advantageous when handling citation datasets
within similar fields. On multiple datasets, including Cora, Cite-
seer, CS, PubMed, Physics, and Flickr, the performance of W3 is
superior to that of W2, which can be attributed to the fact that W3
learns more general patterns in the data. On the Photo dataset,
the performance of W2 is higher than that of W3. We speculate
that this result could be due to the dense nature of the edges
in the Photo dataset. W? tends to perform well on dense edges,
and a similar phenomenon is observed on other dense graphs
such as CS, CoraFull, and Reddit, where the performance of W?
is comparable to that of W3,

Z. Huang, W. Zhou, K. Li et al.

Knowledge-Based Systems 279 (2023) 110923

Table 4
Ablation study on node classification.
Datasets Cora CiteSeer Photo CS PubMed CoraFull Physics Flickr Reddit Amazon
SGCN 8866 + 0.33 8110 + 0.14 9498 + 035 9485 + 030 89.10 = 034 7343 + 027 9670 + 020 5119 + 040 9463 + 0.14 79.91 + 023
SGCN - (Res} 8722 + 043 7741 % 0.15 9305 £ 074 9422 + 045 8823 £ 065 7005 £ 020 9547 + 044 4839 + 068 9342 + 043 7879 % 0.61
SGCN - (Deg) 8679 + 034 7567 + 039 9222 + 0.37 92.10 + 0.8 8731 + 045 6853 + 0.22 96.04 + 027 4863 + 029 9323 + 031 79.01 + 035
100 -
w3
90 -
W+W-
> 80
3
]
=70
5]
2
60
50
40
Cora CiteSeer Photo CS PubMed CoraFull Physics Flickr Reddit Amazon
Fig. 6. Impact of kernel shape on performance.
90 90 90
i L s /\,/‘\ .
Eem—me s 86
.., 86 PubMed 86 R B =t me 5 93
2 —e— Cora g o - CiteSeer oy Reddit
£ 84 Citeseer £84 @8 82— Anazon B Publled
E —+— Amazon 5 =1 ; 91
882 882 3 S s e 2
< < < ey s M 2
80 80 \‘\.—~\ — B
78 78 S 74
76 76 81
60 80 100 120 140 0.001 0.003 0.005 0.01 0.015 70
Channels Learning rate 0 0.2 0.5 0.8 1 0 0.2 0.5 0.8 1
97 97 sample ratio sample ratio
98 80
96 Physics 96 97 75
—e— Photo
2 s z 96 70 -\'\'\-—‘.
s . Reddit g 95 p—— . %
= —_— 5 15
g e | B \ g9 e E 65
< o < Physics —— 2o i S 60 CoraFull
—=— Photo 51 —=— CoraFu
93 Ix’sg\llil < 93 \\\ < £8 Flickr
cs :ft)sir&
93750 80 100 120 140 %0001 0.003 0.006 0.0l 0.015 92| ot =
Channels Learning rate 91 45
80 80 0 02 05 0.8 1 0 0.2 05 08 1
15 . sample ratio sample ratio
———— . '\-—\
-——’/. 3 . .
510 s 1O Bess ——— Fig. 8. Impact of the sample ratio on performance.
£ 65 & 65
b] —— Coratull
S 60| — Coratull g 60 Flickr
< 55 Flickr < 55
o < optimization capabilities of the SGCN. The node sampling mech-
i . anism in the SGCN utilizes degree centrality to gauge the impor-
60 g 100 120 140 0.001 0.003 0.005 0.01 0.015 tance of nodes, which effectively captures nodes that contribute
Channels Learning rate

Fig. 7. Impact of the number of channels and learning rate on the performance.

6.3. Ablation study

We investigated the contributions of each component con-
stituting the scalable graph convolution network (SGCN) using
ablation studies, and the accuracy of the variants is presented in
Table 4. The term SGCN-Res signifies the removal of the residual
connection, whereas SGCN-Deg symbolizes the elimination of
degree centrality from the sampler. As per the findings from Ta-
ble 4, the exclusion of either the residual connection or the node
sampling mechanism results in a notable decline in accuracy.

The residual connection fulfills a crucial function by amalga-
mating initial representations and corresponding representations
following convolutional layers. This melding bolsters the global

predominantly to the final node representations.

The performances resulting from reducing SGCN-Res and
SGCN-Deg are closely parallel on the larger-scale datasets, includ-
ing PubMed, Physics, Flickr, Reddit, and Amazon. On the smaller-
scale datasets, SGCN-Deg demonstrates a lesser performance than
SGCN-Res, suggesting that degree centrality has an enhanced
impact on smaller-scale datasets. This phenomenon may occur
because, within smaller datasets, nodes deemed important may
exert a more significant influence over the representations of
other nodes, leading to a more discernible improvement.

6.4. Parameter sensitivity

In this subsection, we explore the sensitivities of various pa-
rameters. The first column of Fig. 7 delineates the influence of
channels on the SGCN's performance. On datasets such as Cora,
CiteSeer, Photo, CS, PubMed, and CoraFull, the SGCN’s accuracy
curves exhibit a pronounced peak in the middle with declines on
each side. The peak performance of the SGCN is achieved when

Z. Huang, W. Zhou, K. Li et al.

Knowledge-Based Systems 279 (2023) 110923

(a) Kernel W?

(b) Kernel W3

Fig. 9. Case Study of SGCN patterns on the Cora dataset. (a) illustrates two patterns learned by W2, while (b) shows the patterns learned by W3. w represents the
weight of each node in the patterns, and the different node colors represent their corresponding categories.

the channel configuration is set to 100 for the Cora, CiteSeer,
PubMed, and CoraFull datasets. However, on the CS and Amazon
datasets, the apex is reached with 120 channels, and the photo
reaches its peak with 80 channels. The SGCN’s performance on
the Flickr dataset is relatively stable, while on the Reddit dataset,
there is an improvement as the number of channels increases.

The second column of Fig. 7 demonstrates the effects of vary-
ing learning rates on the performance of the SGCN. Across most
datasets, excluding the PubMed, CS, and Flickr datasets, there is
a noted decline in the SGCN’s performance as the learning rate
increases. This flexion suggests that the SGCN performs more
efficiently with a lower learning rate. The PubMed and CS datasets
achieve peak performance when the learning rate is adjusted
to 0.003, while on the Flickr and Amazon datasets, the best
performance is recorded with a learning rate of 0.01.

Fig. 8 describes the impact of the sample ratio within the 3-
hop neighborhoods on the SGCN’s performance. The sample ratio
profoundly influences the SGCN's effectiveness, although trends
differ across various datasets. The maximum accuracy is reached
when the sample ratio is set to 0.2 for the Cora, Physics, CS, and
Amazon datasets, while an exceptional accuracy improvement
is observed for CiteSeer at a sampling ratio of 0.5, substantially
surpassing the performance of the baseline.

6.5. Case study

A case study that employs the Cora dataset is described here,
and it scrutinizes patterns utilizing different kernels within the
SGCN. The intention of this study is to discern the behaviors
of two kernel types, namely, W2 and W3, within the 2-hop
neighborhood of node 633 (disregarding irrelevant nodes). Fig. 9
displays the impacts of these kernels with corresponding weights
marked next to the involved nodes, nodes distinguished by differ-
ent colors signify different classes.

In the study, the SGCN was applied to the neighborhood of
node 633, and it utilized two W? kernels and one W3 kernel.
Both W? and W3 kernels exhibit higher weights on the central
node compared to the neighboring nodes. In Fig. 9(a), node 633
has a weight of w% = 0.144, which is greater than the weights
of w? = 0.051 and w? = 0.081, which were assigned to its
neighboring nodes. Similarly, in Fig. 9(b), node 633 has a weight
of w3 = 0.110, which is greater than the weights of w3 = 0.028,
w3 = 0.086, and w; = 0.036 assigned to its neighboring nodes.
These results indicate that both the W? and W3 kernels learn to
prioritize the central node over the neighboring nodes, especially
when they belong to the same label.

6.6. Visualization

We leveraged t-SNE [58] to visualize node representations,
thus exploring the performance differentials between the SGCN
and the baseline variants. Fig. 10 depicts these visualization re-
sults, mapping the node representations yielded by the SGCN into
a two-dimensional subspace. Initially, prior to training, there is
notable chaos in the node distributions. However, post-training,
discernible clusters form in most GNNs, leading to multi-cluster
formations. The GCN, GraphSage, FastGCN, and ASGCN yield six
clusters, and the GAT and MPNN produce seven clusters, albeit
with some nodes of different labels intermingled. GraphSAINT
results in eight clusters, while the FusedGAT visualization appears
disorderly. Nodes are clustered per their labels in the SGCN,
SplineCNN, ClusterGCN, PaSca, and Anti-Symmetric DGN. Notably,
clusters formed by nodes in the SGCN appear denser than those
in the baselines.

Furthermore, we also visualized the node distribution on the
CiteSeer dataset in Fig. 11. The distribution delineations of the
GCN, GAT, GraphSage, MPNN, FastGCN, ASGCN, and FusedGAT are
less distinct. GraphSAINT forms six cone-like clusters, although
there remain unclassified nodes at the center. PaSca categorizes
the nodes into seven clusters, whereas SplineCNN, ClusterGCN,
the Anti-Symmetric DGN, and the SGCN precisely classify the
nodes into six clusters with a relatively straightforward distri-
bution. However, the distribution of nodes in the SGCN demon-
strates a higher level of concentration compared to ClusterGCN.

7. Conclusion

Graph neural networks (GNNs) are based on message passing,
which acts on the feature dimension of nodes during aggrega-
tion. The integration modes employed by these GNNs are sim-
ple, which limits their flexibility and expression capability when
learning the local structural features of graphs. To address this
limitation, we propose a scalable graph convolutional network
(SGCN). The SGCN introduces graph-shape convolution kernels
with different sizes and designs, and the kernels operate convo-
lutions on the subgraphs and weights of the kernels. By sharing
parameters within the graph, each kernel performs convolutions
from different perspectives. Extensive experiments validate the
generalization and stability of the SGCN for graphs of various
scales, and it achieves state-of-the-art performance on node clas-
sification tasks. The SGCN offers a new perspective for the design
of graph kernel convolution. As a powerful GNN model, the SGCN
has been extended to a broader range of representation learning
applications. For instance, the SGCN can serve as a substitute for
the GCN in RGDAL [36] to achieve improved node classification
performance and improved clustering performance for models
based on node representations such as VCLANC [35].

Z. Huang, W. Zhou, K. Li et al. Knowledge-Based Systems 279 (2023) 110923

(a) Before training (b) GCN (c) GAT

(h) ASGCN (i) ClusterGCN

(j) GraphSAINT (k) PaSca (1) FusedGAT

(m) Anti-Symmetric (n) SGCN

Fig. 10. Visualization of node classification task on Cora.

10

Z. Huang, W. Zhou, K. Li et al. Knowledge-Based Systems 279 (2023) 110923

; 5 5 CE Y

(a) Before training (b) GCN (c) GAT

.

e et e N3
TE Pk

(d) GraphSage

Ki\‘k%

(h) ASGCN (i) ClusterGCN

(j) GraphSAINT (1) FusedGAT

e
(m) Anti-Symmetric (n) SGCN

Fig. 11. Visualization of node classification task on CiteSeer.

11

Z. Huang, W. Zhou, K. Li et al.

CRediT authorship contribution statement

Zhenhua Huang: Supervision, Methodology, Formal analy-
sis, Conceptualization. Wenhao Zhou: Writing - original draft,
Data curation. Kunhao Li: Writing - review & editing, Software,
Methodology. Zhaohong Jia: Supervision.

Declaration of competing interest

We, the authors, hereby declare that we have no known com-
peting financial interests or personal relationships that may have
influenced the outcome or interpretation of our work.

Data availability

Data will be made available on request

Acknowledgments

This work was supported by the National Natural Science
Foundation of China (Number 71971002). We also thank the team
of PyG [57] for their support during our experiments.

References

(1

2]

(3]

M. Simonovsky, N. Komodakis, Dynamic edge-conditioned filters in con-
volutional neural networks on graphs, in: Proceedings of the 2017 IEEE
Conference on Computer Vision and Pattern Recognition, CVPR, 2017,
pp. 3693-3702.

H. Pei, B. Wei, K.C.-C. Chang, Y. Lei, B. Yang, Geom-GCN: Geometric
graph convolutional networks, in: Proceedings of the 8th International
Conference on Learning Representations, ICLR, 2020.

S. Wu, F. Sun, W. Zhang, X. Xie, B. Cui, Graph neural networks in
recommender systems: A survey, ACM Comput. Surv. 55 (5) (2022) 1-37.

[4] J. Huang, R. Xie, Q. Cao, H. Shen, S. Zhang, F. Xia, X. Cheng, Negative can be

(5]

[6

(7

positive: Signed graph neural networks for recommendation, Inf. Process.
Manage. 60 (4) (2023) 103403.

D.K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell, T. Hirzel, A.
Aspuru-Guzik, R.P. Adams, Convolutional networks on graphs for learning
molecular fingerprints, in: Proceedings of the 28th Advances in Neural
Information Processing Systems, NeurIPS, 2015, pp. 2224-2232.

S. Kearnes, K. McCloskey, M. Berndl, V. Pande, P. Riley, Molecular graph
convolutions: Moving beyond fingerprints, J. Comput. Aided Mol. Des. 30
(2016) 595-608.

Z. Cui, K. Henrickson, R. Ke, Y. Wang, Traffic graph convolutional recurrent
neural network: A deep learning framework for network-scale traffic
learning and forecasting, IEEE Trans. Intell. Transp. Syst. 21 (11) (2019)
4883-4894.

[8] J. Zhang, X. Shi,]. Xie, H. Ma, L. King, D.-Y. Yeung, GaAN: Gated attention

networks for learning on large and spatiotemporal graphs, 2018, CoRR.

[9] J. Liu, Y. Chen, X. Huang, J. Li, G. Min, GNN-based long and short term

[10]

[11]

[12]

[13]

[14]

preference modeling for next-location prediction, Inform. Sci. 629 (2023)
1-14.

X. Song,]J. Li, T. Cai, S. Yang, T. Yang, C. Liu, A survey on deep learning
based knowledge tracing, Knowl.-Based Syst. 258 (2022) 110036.

Y. Wang, Y. Sun, Z. Liu, S.E. Sarma, M.M. Bronstein, .M. Solomon, Dynamic
graph cnn for learning on point clouds, ACM Trans. Graph. (tog) 38 (5)

(2019) 1-12.
R. Hu, A. Rohrbach, T. Darrell, K Saenko, Language-conditioned
graph networks for relational reasoning, in: Proceedings of the

IEEE/CVF International Conference on Computer Vision, ICCV, 2019,
pp- 10294-10303.

T. Nguyen, R. Grishman, Graph convolutional networks with argument-
aware pooling for event detection, in: Proceedings of the AAAI Conference
on Artificial Intelligence, AAAI, 2018, pp. 5900-5907.

L. Yao, C. Mao, Y. Luo, Graph convolutional networks for text classification,
in: Proceedings of the 33th AAAI Conference on Artificial Intelligence, AAAI,
2019, pp. 7370-7377.

[15] J. Gilmer, S.S. Schoenholz, P.F. Riley, O. Vinyals, G.E. Dahl, Neural message

[16]

passing for quantum chemistry, in: Proceedings of the 34th International
Conference on Machine Learning, ICML, 2017, pp. 1263-1272.

T.N. K, M. W, Semi-supervised classification with graph convolutional
networks, in: Proceedings of the 5th International Conference on Learning
Representations, ICLR, 2017.

12

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

(34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

Knowledge-Based Systems 279 (2023) 110923

P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio, Y. Bengio, et
al.,, Graph attention networks, in: Proceedings of the 6th International
Conference on Learning Representations, ICLR, 2018.

W. Hamilton, Z. Ying,]. Leskovec, Inductive representation learning on
large graphs, in: Proceedings of the 31st Advances in Neural Information
Processing Systems, NeurIPS, 2017, pp. 1025-1035.

X. He, K. Deng, X. Wang, Y. Li, Y. Zhang, M. Wang, Lightgcn: Simplifying
and powering graph convolution network for recommendation, in: Pro-
ceedings of the 43rd International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR, 2020, pp. 639-648.

Y. Shi, Z. Huang, S. Feng, H. Zhong, W. Wang, Y. Sun, Masked label pre-
diction: Unified message passing model for semi-supervised classification,
in: Proceedings of the 30th International Joint Conference on Artificial
Intelligence, IJCAI, 2021, pp. 1548-1554.

H. Zhang, Z. Yu, G. Dai, G. Huang, Y. Ding, Y. Xie, Y. Wang, Understanding
gnn computational graph: A coordinated computation, io, and memory
perspective, Proc. Mach. Learn. Syst. 4 (2022) 467-484.

A. Gravina, D. Bacciu, C. Gallicchio, Anti-symmetric DGN: A stable archi-
tecture for deep graph networks, in: Proceedings of the 11th International
Conference on Learning Representations, ICLR, 2023.

X. Wang, M. Zhu, D. Bo, P. Cui, C. Shi,]J. Pei, Am-gcn: Adaptive multi-
channel graph convolutional networks, in: Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining,
KDD, 2020, pp. 1243-1253.

Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied
to document recognition, Proc. IEEE 86 (11) (1998) 2278-2324.

Q. Zhang, Y.N. Wu, S.-C. Zhu, Interpretable convolutional neural networks,
in: Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, CVPR, 2018, pp. 8827-8836.

M. Defferrard, X. Bresson, P. Vandergheynst, Convolutional neural networks
on graphs with fast localized spectral filtering, in: Proceedings of the
30th International Conference on Neural Information Processing Systems,
NeurlPS, 2016, pp. 3844-3852.

F. Wu, A. Souza, T. Zhang, C. Fifty, T. Yu, K. Weinberger, Simplifying
graph convolutional networks, in: Proceedings of the 36th International
Conference on Machine Learning, ICML, 2019, pp. 6861-6871.

J. Chen, T. Ma, C. Xiao, Fastgcn: Fast learning with graph convolutional
networks via importance sampling, in: Proceedings of the 6th International
Conference on Learning Representations, ICLR, 2018.

W. Huang, T. Zhang, Y. Rong,]. Huang, Adaptive sampling towards fast
graph representation learning, in: Proceedings of the 32nd Advances in
Neural Information Processing Systems, NeurIPS, 2018, pp. 4563-4572.
W.-L. Chiang, X. Liu, S. Si, Y. Li, S. Bengio, C.-J. Hsieh, Cluster-gcn: An
efficient algorithm for training deep and large graph convolutional net-
works, in: Proceedings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, KDD, 2019, pp. 257-266.

H. Zeng, H. Zhou, A. Srivastava, R. Kannan, V. Prasanna, Graphsaint: Graph
sampling based inductive learning method, in: Proceedings of the 8th
International Conference on Learning Representations, ICLR, 2020.

L.C. Freeman, et al,, Centrality in social networks: Conceptual clarification,
Soc. Network: Critical Concepts Sociol.. Londres: Routledge 1 (2002)
238-263.

N. Shervashidze, S. Vishwanathan, T. Petri, K. Mehlhorn, K. Borgwardt,
Efficient graphlet kernels for large graph comparison, in: Proceedings of
Artificial Intelligence and Statistics, PMLR, 2009, pp. 488-495.

L. Wy, D. Wang, K. Song, S. Feng, Y. Zhang, G. Yu, Dual-view hypergraph
neural networks for attributed graph learning, Knowl.-Based Syst. 227
(2021) 107185.

S. Yang, S. Verma, B. Cai, J. Jiang, K. Yu, F. Chen, S. Yu, Variational co-
embedding learning for attributed network clustering, Knowl.-Based Syst.
270 (2023) 110530.

S. Yang, B. Cai, T. Cai, X. Song, J. Jiang, B. Li,]. Li, Robust cross-network node
classification via constrained graph mutual information, Knowl.-Based Syst.
257 (2022) 109852.

Q. Li, Z. Han, X.-M. Wu, Deeper insights into graph convolutional networks
for semi-supervised learning, in: Proceedings of the 32nd AAAI Conference
on Artificial Intelligence, AAAI, 2018, pp. 5900-5907.

W. Zhang, Y. Shen, Z. Lin, Y. Li, X. Li, W. Ouyang, Y. Tao, Z. Yang, B.
Cui, Pasca: A graph neural architecture search system under the scalable
paradigm, in: Proceedings of the 2022 ACM Web Conference, 2022,
pp. 1817-1828.

N.M. Kriege, F.D. Johansson, C. Morris, A survey on graph kernels, Appl.
Netw. Sci. 5 (1) (2020) 1-42.

H. Kashima, K. Tsuda, A. Inokuchi, Marginalized kernels between la-
beled graphs, in: Proceedings of the 12th International Conference on
International Conference on Machine Learning, AAAI Press, ICML, 2003,
pp. 321-328.

P. Mahé, N. Ueda, T. Akutsu, J.-L. Perret,].-P. Vert, Extensions of marginal-
ized graph kernels, in: Proceedings of the 21th International Conference
on Machine Learning, ICML, 2004, p. 70.

Z. Huang, W. Zhou, K. Li et al.

[42]

[43]

S.V.N. Vishwanathan, N.N. Schraudolph, R. Kondor, K.M. Borgwardt, Graph
kernels, J. Mach. Learn. Res. 11 (2010) 1201-1242.

K.M. Borgwardt, H.-P. Kriegel, Shortest-path kernels on graphs, in: Pro-
ceedings of the 5th IEEE International Conference on Data Mining, ICDM,
2005, p. 8.

[44] J. Ramon, T. Gdrtner, Expressivity versus efficiency of graph kernels, in:

[45]

[46]

[47]

[48]

[49]

Proceedings of the 1st International Workshop on Mining Graphs, Trees
and Sequences, 2003, pp. 65-74.

N. Shervashidze, P. Schweitzer, EJ. Van Leeuwen, K. Mehlhorn, K.M.
Borgwardt, Weisfeiler-Lehman graph kernels, J. Mach. Learn. Res. 12 (9)
(2011) 2539-2561.

G. Nikolentzos, P. Meladianos, AJ.-P. Tixier, K. Skianis, M. Vazirgiannis,
Kernel graph convolutional neural networks, in: Proceedings of the 27th
International Conference on Artificial Neural Networks, ICANN, 2018,
pp. 22-32.

M. Fey, J.E. Lenssen, F. Weichert, H. Miiller, Splinecnn: Fast geometric
deep learning with continuous B-spline kernels, in: Proceedings of 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR,
2018, pp. 869-877.

S.K. Arul Prakash, C.S. Tucker, Node classification using kernel propagation
in graph neural networks, Expert Syst. Appl. 174 (2021) 114655.

AJ.-P. Tixier, G. Nikolentzos, P. Meladianos, M. Vazirgiannis, Graph clas-
sification with 2d convolutional neural networks, in: Proceeding of
International Conference on Artificial Neural Networks, ICANN, 2019,
pp. 578-593.

13

[50]

Knowledge-Based Systems 279 (2023) 110923

M. Niepert, M. Ahmed, K. Kutzkov, Learning convolutional neural networks
for graphs, in: International Conference on Machine Learning, ICML, 2016,
pp. 2014-2023.

[51] J. Bruna, W. Zaremba, A. Szlam, Y. LeCun, Spectral networks and locally

[52]

[53]

[54]

[55]

[56]

[57]

[58]

connected networks on graphs, in: Proceedings of the 2nd International
Conference on Learning Representations, ICLR, 2014.

G.X. Feng, Over-Smoothing Algorithm and Its Application to GCN
Semi-supervised Classification No. 002, ICPCSEE, 2020, pp. 197-215.

K. He, X. Zhang, S. Ren,]. Sun, Deep residual learning for image recognition,
in: Proceedings of the 2016 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR, 2016, pp. 770-778.

Z. Yang, W. Cohen, R. Salakhudinov, Revisiting semi-supervised learn-
ing with graph embeddings, in: Proceeding of the 33rd International
Conference on Machine Learning, ICML, 2016, pp. 40-48.

0. Shchur, M. Mumme, A. Bojchevski, S. Giinnemann, Pitfalls of graph
neural network evaluation, 2018, CoRR abs/1811.05868.

K. Huang, J. Zhai, Z. Zheng, Y. Yi, X. Shen, Understanding and bridging
the gaps in current GNN performance optimizations, in: Proceedings of
the 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP, 2021, pp. 119-132.

M. Fey, J.E. Lenssen, Fast graph representation learning with PyTorch
Geometric, in: Proceedings of ICLR Workshop on Representation Learning
on Graphs and Manifolds, ICLR, 2019.

V.D.M. Laurens, G. Hinton, Visualizing data using t-SNE,]. Mach. Learn. Res.
(2008) 2579-2605.

